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A two-dimensional problem in the hydrodynamics of a vapor layer and the process 
of heat transfer under conditions of the Leidenfrost phenomenon is examined in 
the exchange of heat between a liquid spheroid and the ambient medium. 

A review and the contemporary state of various questions dealing with the experimental 
and theoretical study of the Leidenfrost phenomenon are covered in [i-5], where an extensive 
bibliography can be found. The influence of individual factors such as drop dimension, 
roughness of the heated surface, the degree of initial underheating, etc., on the Leidenfrost 
temperature T L has been examined in rather great detail. As a rule, however, little consider- 
ation has been given to the effect on T L from the exchange of heat between a liquid spheroid 
and the ambient medium. Nevertheless, the very first experimental studies [6] have demon- 
strated qualitatively the nonuniformity of the temperature field in the spheroid, which, all 
other factors aside, is apparently also associated with the process of heat exchange which 
takes place between the outer surface of the spheroid and the ambient medium. It is the pur- 
pose of this paper to take approximate account of the exchange of heat between the liquid 
spheroid and the ambient medium, as well as of the two-dimensionality of the vapor flow be- 
neath the spheroid. 

Let us consider the case of rather large spheroids in which the liquid drop is similar 
in shape to a disk of thickness H and radius Ro As our basic and frequently utilized assump- 
tions we will take those formulated in [4]. We will additionally assume that the exchange 
of heat between the spheroid and the ambient medium at the upper and side surfaces of the 
spheroid satisfies boundary conditions of the third kind. We will also neglect the convection 
of the liquid within the spheroid, which is a consequence of the relationship between the 
density of the liquid and the temperature, the Marangoni\effect, etc. 

Let us introduce a cylindrical system of coordinates, setting the origin of the Z axis 
at the heating surface. Then, within the framework of quasisteady approximation, the hydro- 
dynamics and heat transfer of the "spheroid-vapor layer" system considered will be de- 
scribed by the following system of equations: 
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Here boundary condition (9) for liquid temperature is taken with the additional assumption 
that the exchange of heat at the side surface of the drop, spheroidal in shape, generally 
speaking, in first approximation can be represented as the exchange of heat at the cylindri- 
cal side surface of a disk with a constant coefficient of heat transfer a 2. 

Speaking of boundary condition (8) for vapor temperature, it should be noted that in 
the real problem it is difficult to specify a law governing the distribution of the tempera- 
ture in the vapor layer at the symmetry axis. Therefore, it is proposed to interpolate by an 
exponential series with respect to the transverse coordinate this function F(z), limit- 
ing ourselves in each specific problem to a finite number of series terms. In this case, 
the expansion factors must be sought from among additional physical concepts. 

Let us note that the velocity V of the vapor at the boundary of phase separation and 
the thickness of the vapor layer are not known in advance and must be determined during the 
course of solving the formulated problem. With consideration of the aforesaid, we must ad- 
ditionally take into consideration the condition of liquid-drop equilibrium on the vapor layer 
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This last condition is written with consideration of the assumption to the effect that 
the reaction of the removed vapor is negligibly small in comparison with the drop force of 
gravity. It should be noted that Eq. (i0) is approximate in nature and is used here in con- 
junction with the concept of a liquid spheroid in the form of a rigid disk in the presence 
of significant underheating. Resorting to boundary conditions (7)-(9) for the temperature 
of the liquid, we can write the solution of Eq. (3) with the familiar methods of [7] in the 
form 

Ts = T~ -}- Cn exp B 
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where C n are the expansion factors as yet unknown; e n are the roots of the characteristic 
equation Bi2J0(s) = EJl(e). Using boundary condition (5) for the liquid temperature, with 
consideration of the orthogonality of the basis functions, from (Ii) we find that 

CTZ 
2 (T~ -- T~),f~ (e.) 
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Let us note that for the final determination of C n we must know the thickness of the vapor 
layer. 

The temperature distribution in the vapor layer is sought in the form of a series over 
the transverse coordinate 

T (r, z) = ~ zkTh (r), (13) 
h=O 

where Tk(r) are functions as yet unknown. Having determined the vapor-velocity vector pro- 
jections from (I), with consideration of boundary Conditions (4) and (5) for u r and condi- 
tion (4) for Uz, and having substituted these together With (13) into (2), after regrouping 
of terms we obtain the following system of differential equations: 
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A unique feature of this derived system of equations is the fact that if in it we limit 
ourselves to a finite number of, for example, the first N, equations, we will always come to a 
subsystem containing N + 3 unknown functions: p, To, Tl, ..., TN+ I. The first two missing 
equations follow from boundary conditions (4) and (5) for the vapor temperature and with 

consideration of (13) have the form 

oc 
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The last missing equation follows from (6) with consideration of (ii) and (13) as wall as 
from the solution of system (i) with boundary condition (5) for u z and can be written in 

the form 
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Thus the first N equations from (14) in combination with (15) and (16) form a closed system 
of nonlinear differential equations for determination within the scope of this approximation 
of the pressures and temperatures within the vapor layer, where consideration is given to 
boundary conditions (8) and (9). The last unknown parameter h is determined after finding 
P as a solution of Eq. (i0). 

Let us now consider the simpler special case of constructing an approximate solution 
of this problem, when in (14) we can limit ourselves to the single first equation (N = i). 
It is not difficult to see that such a special case corresponds to the frequently employed 
linear interpolation of the temperature in the vapor layer as a function of the lateral 
z coordinate. Then from the system of equations (14)-(16) we find 
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The projections of the vapor velocity vector onto the coordinate axes for the special case 
under consideration from the solution of system of equations (i) with consideration of (17) 

have the form 
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Fig. 2. The relationship between (T L - Ts)/(T L' - Ts) and A/h, 
(a), (T s - Tc)/AT (b) and H/R (c): Xs = 30, N,/R = 0.01. a) 
H/R = 0.7, (T s - Tc)/AT = 15: i) Bi~ = Bi 2 = 0.i; 2) 1.0; 3) 
i0.0. b) H/R = 0.7, A/h, = 0.5: i) Bi I = Bi 2 = 0.i; 2) 1.0; 
3) i0.0. c) A/h, = 0.5, Bi I = Bi 2 = 0.i: i) (T s - Tc)/AT = 5; 
2) 20; 3) 50; 4) i00; 5) 150; 6) 200. 

As an illustration Fig. 1 shows the field of the dimensionless velocity vector in the 
vapor layer beneath the liquid spheroid, constructed with consideration of (18). In this 
case, as the scale of the velocity we chose the maximum value of u r attained when z = h/2 
and r = R. The calculations were carried out with the following basic system parameters: 

H/R = 0.3, Bi I = Bi 2 = 0.i, h/R = 0.01054, 1s = 30, (T s - Tc)/(T w - Ts) = 0.3. In view 
of the smallness of the values for the dimensionless lateral vapor velocity component, for 
convenience of construction this component of the velocity vector was increased by a factor 
of R/h, which in the example under consideration amounted to 94.876. 

To determine the last unknown parameter of the problem, we will substitute (17) into 
(I0). Then, after appropriate transformations with consideration of (12), we obtain the 
following equation for the determination of the vapor-layer thickness: 
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where certain characteristic values corresponding to the thickness of the vapor layer and 
the temperature difference have been taken as the scale magnitudes. 

Let us examine the question of the effect exerted by consideration of the liquid- 
spheroid heat exchange with the ambient medium on the calculated values of the Leidenfrost 
temperature. For T L we traditionally assume a temperature of the heated surface such that 
the spheroid at its base is in contact with the apices of its roughness. Assuming in this 
case that 

T~=TL; h=A, (20) 

f rom (19)  we o b t a i n  t h e  e x p r e s s i o n  f o r  c a l c u l a t i o n  o f  t h e  L e i d e n f r o s t  t e m p e r a t u r e  w i t h  con-  
s i d e r a t i o n  o f  t h e  exchange  o f  h e a t  be tween  t h e  l i q u i d  o f  t h e  s p h e r o i d  and t h e  ambien t  medium. 

After we have compared the expression that we obtained in this manner with the familiar 
results, we note the following. If we neglect the exchange of heat between the spheroid 
and ambient medium (which is the case when Bi I = Bi 2 = 0), the obtained relationship leads 
directly to the familiar asymptote 

AT h, (21) 

which is in good agreement for the case of rather large A/h, with the results in [5]. 

Figure 2a shows the calculated values of the Leidenfrost temperature in dimensionless 
relative coordinates with consideration of the exchange of heat between the spheroid and 
the ambient medium as a function of the roughness of the heated surface. As follows from 
these data, the presence of spheroid heat exchange for comparatively small values of A/h, 
leads to a noticeable increase in the Leidenfrost temperature. And, conversely, when the 
relative roughness exhibits rather large values, we find that the effect of taking into con- 
sideration the exchange of heat from the spheroid as it regards the anticipated increase 
in the Leidenfrost temperature is rather weakly expressed. 

The effect of the temperature of the ambient medium and H/R on (T L - Ts)/(T L' - Ts) 
for certain characteristic values of the remaining parameters may be illustrated as an ex- 
ample by the relationships in Fig. 2b, c. 

As we were constructing these relationships we kept in mind (19), as well as (20), for 
the case in which Bi ! = Bi2, and also the well-known relationship (21). 

The results considered here indicate the need in a number of cases of the Leidenfrost 
phenomenon to account for the exchange of heat of the liquid spheroid and the ambient medi- 
um. In this case, consideration of the spheroid heat exchange leads to an increase in the 
calculated values of the Leidenfrost temperature relative to the values which might be de- 
rived if it were not taken into consideration. We can expect that in the case of a more 
realistic model of the process the effect of allowing for the exchange of heat of the sphe- 
roid as far as the calculated values of the Leidenfrost temperatures are concerned will be 
more pronounced. Apparently, this may be associated with the presence of the convection 
mechanism of heat transfer within the spheroid, which was not taken into consideration in 
the model examined here. 

The formulas presented here, and which correspond to the sfmplest case in which in (14) 
it is acceptable to limit ourselves to only a single first equation (N = i), naturally are 
approximate in nature. However, with accuracy to within all of the above assumptions, they 
do allow us to obtain preliminary quantitative estimates of the extent to which the heat 
exchange of the liquid spheroid with the ambient medium affects the hydrodynamics and heat- 
transfer process in the vapor layer. In those cases in which accuracy must be raised, we have 
to limit ourselves to a larger number (N e 2) of first equations in system (14). 
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NOTATION 

r, z, cylindrical coordinates; Ur, Uz, projections of the vapor velocity vector onto 
the coordinate axes; T, T~, temperatures in the vapor layer and in the liquid spheroid; H, a, 
coefficients of vapor viscosity and thermal conductivity; P, pressure within the vapor layer; 
V, velocity of the vapor at the boundary of phase separation; % and %~, coefficients of vapor 
and liquid thermal conductivity; T s, Tw, Tc, saturation temperatures for the liquid, the 
heated surface, and the ambient medium; Pc, pressure in the ambient medium; p, p~, density 
of the vapor and of the liquid; L, specific heat of vaporization; ~i, ~2, heat-transfer co- 
efficients at the upper and side surfaces of the spheroid; H, R, thickness and radius of 
the spheroid; h, thickness of the vapor layer; g, gravitational acceleration; J0, J1, Bessel 
functions of the first kind, of zeroth and first order; h,, AT, characteristic values of 
the vapor-layer thickness and the temperature difference; A, roughness magnitude of the 
heated surface; TL, TL', Leidenfrost temperature for the cases in which consideration is 
given to and not given to the exchange of heat between the liquid spheroid and the ambient 
medium. Criteria: Bi I = ~IR/X~; Bi 2 = ~2R/X~. 
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THE SPREADING OF A MICROSTRUCTURAL FLUID OVER A SOLID SURFACE 

N. P. Migun and A. C. Eringen UDC 532.5.013 

The kinetics involved in the spreading of a drop of microstructural fluid over 
a horizontal solid surface is investigated theoretically. A method is pro- 
posed for the measurement of material constants of the fluid, characterizing 
its micropolarity. 

i. Specialists in the field of hydrodynamics and physical chemistry have recently paid 
particular attention to problems of fluid spreading and displacement of the contact line 
between fluid i, fluid 2, and a solid surface [i-9]. Considerable progress has been achieved 
at this time in this area, but at the same time all of the attempts theoretically to analyze 
the problems of spreading encounter two fundamental difficulties. 

The first difficulty involves the shifting of the contact line, since the Navier-Stokes 
equations for the boundary conditions of adhesion lead to an impermissible singularity in 
the force on this line [i, 2]. There exists a means of eliminating this singularity of force 
by means of utilizing the condition of slippage or shear in the region of the contact line, 
e.g., the Maxwell condition at which the magnitude of the shear is proportional to the local 
velocity gradient [3, 4]. 
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